Combining remote sensing and 3D forest modelling to improve tropical forests monitoring of GHG emissions

Deforestation and forest degradation is considered the second largest source of global anthropogenic GHG emissions. While there is a pressing need to go beyond satellite-based LULCC survey to accurately monitor carbon stocks in the tropics, there is still no operational integrated framework to achieve this goal. In particular, much uncertainty comes from the difficult evaluation of forest degradation impact, which doesn't entail forest conversion. Our project aims at integrating advances in 3D forest modelling and very-high-resolution remote sensing technology to improve monitoring of forest above ground biomass, especially in tropical countries that have signed the Paris Agreement. Our final goal is to supply stakeholders and decision-makers with reliable and accessible information on vegetation carbon stocks in forest territories along with simple predictive, GIS-based models on the consequences of forest degradation in terms of GHG emissions.

The consortium of partners allows covering all steps that need to be considered to rigorously scale-up above ground carbon estimates from tree to forest plot and region. We shall combine: advanced Terrestrial Laser Scanning technology to derive massive tree volume data for allometry development without employing destructive harvesting; 3D forest modelling to link remote sensing information to ground data in order to improve capability of high-resolution satellite data to estimate biomass and detect changes and emissions related to forest degradation for regional up-scaling; collaboration with developing country forest monitoring agencies for integrating project results into their national REDD+ monitoring system and related capacity building with international partners.

IRD (Institut de Recherche pour le Développement), France Dr. Raphaël Pelissier

Project partners
Tampere University of Technology, Finland
Wageningen University, The Netherlands

Total requested funding
702,000 €

Project duration
36 months

Project website and social media

Unfortunately, your cookie settings do not allow the social media element to be displayed. check your settings.

NEWS from 3DForMod



The last-year meeting of the 3DForMod project was held in Helsinki, Finland on the 7-8th January 2020 in the presence of partners from France, The Netherlands and Finland. First day was devoted to exchanges on latest results obtained by all the partners. On second day, program of the project final year was discussed. Latest project outputs and impacts are: the defense of a project related PhD thesis on Terrestrial Laser Scanner technology to assess tropical tree biomass, by Stéphane Momo Takoudjou at Yaoundé University, Cameroon, in November 2019 (see photography); the publication of a synthesis paper on forest biomass upscaling in a special issue on forest properties and carbon cycle studies from Earth Observations of the journal Surveys in Geophysics in late 2019; the insertion in the latest IPCC Guidelines for National Greenhouse Gas Inventories of a box on Terrestrial Laser Scanning as a emerging technology for improving tree biomass estimations.